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1 Introduction

1.1 ACKNOWLEDGEMENT

Special thanks to Dr. Gelli Ravikumar for providing us with the opportunity to work with him on
this project, providing us with resources and ideas to complete this project, and for always being
available to answer questions when needed.

We would also like to thank the research students for providing us the PowerCyber Testbed so that
we could smoothly develop and test our application.

1.2 PROBLEM AND PROJECT STATEMENT

General Problem Statement

Power Grids serve several homes and businesses and are complex in architecture which can
make them vulnerable to instabilities and unusual behavior. Our project aims to use the collected
power grid data to provide analytics and insights into anomalies and provide more meaningful
information about power usage.

General Solution Approach

To resolve the issue, our team will develop a web application that implements a Machine
Learning algorithm to analyze the power grid data and display these analytics in the form of graphs
and plots. The application will be deployed on a remote platform so that it can run continuously
and provide the visuals to the Dashboard that a power grid operator can access. The goal of our
application is to predict anomalies within power grid nodes at different locations to enable prompt
response and to minimize potential outages.

1.3 OPERATIONAL ENVIRONMENT

The entire application is designed to run on a remote server. Each functional component
(i.e. Front-end, Back-end, and Databases) is contained within its own Docker container . Users will
interact with the project by accessing the client-side application through a web browser. There will
be no extreme or hazardous conditions that will affect this project.
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1.4 INTENDED USERS AND USES

Figure 1: Use Case Diagram

From the figure above, the intended audience for this project is power grid
managers/operators who will need to know real time analytics for the power grid. The application
will provide them with visualizations of the power grid nodes and alerts if anomalies are present.
The Dockerization of our project will also allow power grid operators to deploy our application
regardless of the system specifications. Additionally, data analysts will want to view power grid data
over long periods of time to make informed decisions on the power grid.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● Power grid data supplied to us for training is free of anomalies.
● Users will be able to provide clean, formatted data.
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2 Design

Figure 2: Design Architecture Diagram
2.1 FUNCTIONAL REQUIREMENTS

● Machine Learning Requirements:
○ The ML models must use the most recent kWh value from the grid in the

predictions.
○ The ML models must predict the next kWh output for each node in the grid.
○ The ML models must predict the probability of each anomaly class.
○ The ML models must use convolutional layers for deep learning.

● Front-end Requirements:
○ The front-end should receive data from the back-end
○ The front-end should visualize data

■ The front-end should interface directly with the back-end
■ The front-end should have:

● Graph-based visualization
● Geographical representation of the power grid
● Charts for each node’s history and predictions
● Tabular data showing anomaly status for every node

● Back-end Requirements:
○ The server-side application will handle all data communication with the databases
○ All data processing, including ML analysis, will occur on the back-end
○ Provide real-time data to front-end
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2.2 NON-FUNCTIONAL REQUIREMENTS

● Clear documentation
○ Allows future teams to improve on the baseline

● Maintainability
○ Modular coding and Docker containers

● Scalability
○ ML models are generalized predictors for nodes.

● Response time
○ Lightweight front-end to accommodate response rate of work heavy back-end

2.3 CONSTRAINTS

● Only have 1 year’s worth of real data and the rest has to be simulated

2.4 ENGINEERING STANDARDS

● IEEE/ISO/IEC 12207-2017: Software life cycle processes

Our team aimed to be compliant with IEEE Standard 12207-2017. We chose to focus on the
Technical Processes as defined in IEEE Standard 12207-2017. Specifically, the customer and ourselves
conducted the Stakeholder Needs and Requirements Definition process, System/Software
Requirements Definition process, Architecture Definition process, Design Definition process,
Implementation process, and Integration process. From the beginning of our project definition, we
have conducted weekly meetings with our customer. The needs and requirements as desired by our
customer were outlined and slowly evolved into the system requirements and design described in
this document. Since the requirements and functionality were not explicitly clear to us from the
beginning, we chose to structure our software life cycle with an incremental development model.
This way our team could employ an Agile development methodology to tweak the requirements
throughout the development cycle. The foundational architecture of our Software System of
Interest stayed relatively the same, but this incremental development model proved to be beneficial
since our design and technology requirements changed slightly as stated below in Section 2.6.
During the Implementation Process, we utilized project tracking and team communication
applications to assign functional tasks. By continuing our weekly meetings with our customer, we
ensured that the system was developing inline with his needs. The Integration Process was
completed in concurrence with the Implementation Process. As functional modules were developed
and deemed to be in an acceptable state they would be connected with the necessary systems.

2.5 SECURITY CONCERNS AND COUNTERMEASURES

Our biggest concern with this project would be some type of external data manipulation.
That is why we identified our databases as the most likely target for an attack. However, with this in
mind, direct database manipulation would be difficult if users deploy the application with simple
security measures. To directly access the database, attackers would need to gain access to the host
system and have the authentication necessary to access the databases within their respective
Docker containers.

If, instead of a direct attack, the malicious entity attempted to backdoor the system with a
type of SQL injection, our application should show few vulnerabilities. Majority of our endpoints do
not support any user-defined parameters. The few that do would be difficult to manipulate into
SQL attacks as erroneous user input would most likely result in an invalid query. We acknowledge
that the security of the application would benefit greatly by looking into remote hosting security
measures and implementing an authentication interface.
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2.6 DESIGN CHANGES SINCE 491

In our original design, we pictured separate Docker containers for the REST API and the
machine learning models. Our initial thinking was to configure an endpoint that would pass the
necessary grid data to the Tensorflow Docker container running a machine learning application
waiting for a feature matrix. However, after gaining more knowledge on how the two modules
would interface, we chose to integrate both within one Docker container. This specific Docker
container contains both the required Flask dependencies and Tensorflow dependencies. Therefore,
the ML models, which are trained and saved externally, are stored in dedicated folders for the API to
use with stock Keras function calls. This design decision does not change the modularity of our
project since models can easily be replaced or added with minimal change to code.

Additionally, when we were first narrowing the technologies that were to be implemented,
we identified Redis as a database instance to be used for storing some type of short-term data, such
as prediction data from our ML models. Through the development phase, the team chose to replace
the Redis instance with a MySQL database instance. MySQL provides much more functionality to
our project. We store all of the grid time-series data in a single table within the MySQL instance.
While this would also be possible with a Redis instance, the cache-based infrastructure of Redis
conflicts with our desire to keep the project scalable. If future users want to store a longer period’s
worth of data or utilize the application for a larger grid network, Redis could pose a potential
bottleneck.

As outlined in Appendix B.1, the ML algorithms were just conceptually what they should
accomplish. As the understanding of ML progressed the original design was scrapped for two types
of ML models that meet our requirements. One type is the DNN regression model that uses linear
regression with convolutional layers to predict more precisely. The other is used to meet the
requirements of anomaly classification. Logistic regression using softmax final layer allows us to use
convolution to classify any transformer output to be of a given class (normal, power spike, power
failure) with an associated probability.

2.7 FRONT-END DESIGN

The front-end was designed to have a clean-looking and easy to use interface. In order to
achieve this, we built the front-end on the open source “Material Dashboard React” by Creative Tim.
This allowed us to save time in both the design and implementation of the frontend. We then just
had to learn how the files were used for rendering, how they were routed, and what files and code
we could do without and we were able to scrap everything we didn’t need to make room for our data
visualizations. For our data visualizations, we included a geographical representation of the power
grid where you can click on the nodes to get its most recent output as well as seeing the node’s kWh
over time on a graph. You can also check a box and click on another node to compare the two
nodes’ output on the same graph. We also have charts for the kWh history and prediction for each
node as well as a table showing the anomaly status for each node. These are all on their own
separate pages to keep our interface clean-looking.

2.8 BACK-END DESIGN

The back-end was designed with simplicity in mind in order to keep the server-side
application relatively lightweight so that it could support quick response times. Therefore, we chose
to implement the REST API with the Flask framework because of its minimal resource requirements
and relatively simple learning curve. For our databases, we implemented Neo4j and MySQL. Neo4j
is a NoSQL graph database. Despite it being a NoSQL database, Neo4j still supplies exceptional
support for relationship functionality. These properties make it an ideal choice for our power
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grid-based project since it enables fast query times and practical representation of the data. To
assist the Neo4j instance, the team also chose to use a MySQL database instance to assist with our
data handling. MySQL is a well-known relational database service that is extremely scalable. The
main reason we chose to implement a MySQL instance is because of its scalability. While we could
potentially store the grid time-series data in a Neo4j database, that solution may not be scalable if
future users desired to use the application for larger networks or a larger dataset.

2.9 MACHINE LEARNING DESIGN

As stated in Section 3.1, the ML models must predict and classify which requires two types
of models. One is used in the anomaly classification and the other is used in predicting a
continuous value representing the future kWh output. This implementation will be split into two
subsections covering each model.

2.9.1 DNN Regression

From Appendix C.1, there are 3 repeatable steps involved in ML. The first being
representation. The feature vector that represents the information at each node will include the
static node information of the transformer type, the previous and most recent kWh output, and the
kWh from the previous node in the chain. These attributes were chosen because they represent a
lot of the information needed to understand the context of each node temporally, locality, and
statically.

For the second step we must choose a loss function to evaluate the model. For this we
decided upon using MAE vs MSE. Both are popular loss functions with their own set of pros and
cons. Since we wanted to focus more on the scalability and overall generalizability of our models the
MAE was chosen. This is because MAE is more robust in dealing with outliers and prevents the
overfitting of the DNN model.

The final step is optimization which is essentially the training parameters that determine
how we traverse the gradient of the loss function. For our purposes these are not specifically
designed for as during training time the hyperparameters can be optimized using a validation set.

2.9.2 Logistic Regression

The difference between DNN of 3.7.1 and Logistic Regression is the minor representation
difference and loss function. We have identified 3 different classes of data. One is the normal data,
the second is a power spike where the output exceeds twice what we expect, and a power failure
where the power output drops dramatically. To accomplish this we need to use a softmax function.

Figure 3: Softmax equation

This function converts K inputs into K outputs that sum to 1 which will be used for probability. For
our purpose, K will be 3 (one for each class). This softmax function is the final layer of the DNN
Logistic model.

The difference is loss function is now sparse categorical cross entropy error. The reason we
are using sparse is for simplicity so that the labels do not have to be one-hot encoded (there is no
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functional difference) and the training time is faster. Cross entropy is the main loss function for
logistic regression because it relates to the probability of predicting the correct classification.

3 Implementation

3.1 FRONT-END

The front-end for the web application uses the React library to visualize the User Interface.
We have used the Material-UI framework’s premade template as a basis for the design. We only
needed to use the page routing, navigation bar and dynamic table that is provided by the library, as
the various other tools were not necessary for our application. To visualize the 240-node power grid,
we used the “react-d3-graph” library which allows us to create an interactive 240 node
representative grid. The power grid schematic has relative coordinates for each of the nodes which
is stored in a database as a static property of the node (Explained further in section 3.2). By fetching
the coordinates, the D3 graph can position the nodes accordingly, along with labeling them with the
appropriate transformer codes.

Now that we can see the nodes, a requirement is to show the current and previous kWh
values for the chosen node. Through further REST API calls, the current value of the node is
retrieved and displayed as a pop-up. The 24 hour history of values for this node is to be represented
in a line chart. The React Google Charts library provides a simple looking line chart that we will use
to display the past 24 hour time-series data. The final point of data within the chart is a Predicted
value for the next hour. The predicted data is generated by the machine learning algorithm
(Explained in section 3.3) which is then fetched from the backend through a REST API call and
added to the line chart prior to rendering. There is also a feature to compare other nodes’ history
data by selecting the checkbox option that enables the user to do so. This overlaps the two line data
in the chart that lets you see values for each hour and the overall pattern of changes in kWh.

The final requirement is to determine if any of the transformers have an anomaly in their
power outputs. There are 3 possible anomaly types: Normal, Spike, Failure.  A page showing
anomaly statuses for every node in a tabular format is used for this purpose. The anomaly status is
fetched from the backend and inserted into the Material-UI’s provided table that has been modified
to capture header and row information from the data array.

3.2 BACK-END

The structure of our back-end consists of three main components: the Neo4j database, the
MySQL database, and the REST API. The Neo4j database is intended to store any static information
necessary for a given transformer in the grid network. These properties include the real and reactive
power impedance ratios, voltage and current ratings, relative coordinates, and the previous bus in
the network. Along with that, the nodes store the most recent kWh value reported from the node,
the time that the node was updated, the kWh value reported previously, and the kWh output of the
previous bus in the grid. Since Neo4j is a graph-based database, structuring each node as a
transformer seems like the most practical and easy-to-understand method for grid representation.

Then, the MySQL database has one table to store the necessary time-series data from the
power grid simulation. The table holds one year’s worth of data from each of the busses in the grid
since that was the dataset with which we were provided. The busses report values hourly. The date

10



and time of the reported values are used as the primary keys for the table with columns specific to
each bus making it simple to query for a specific transformer or specific time interval.

Finally, our REST API provides the connection for the frontend to access the relevant data.
The service is developed with the Flask framework. Our team developed with a basic RESTful
methodology in mind. For that reason, we tried to keep the number of endpoints minimal.
Endpoints were only created if there was a specific need for certain data. Each endpoint has some
combination of Cypher and/or SQL queries to be executed by the respective driver connection for
the Neo4j and MySQl database. In addition to basic data querying, URLs were instantiated for
performing the ML predictions and anomaly detections. As mentioned earlier in Section 2, the
saved ML models are stored in separate folders and loaded into their respective objects at startup.
Aside from the URL mappings and functionality, the server-side application also configures a
background scheduler to update the properties in the Neo4j nodes at the top of every hour. The
task pulls the time series data from the MySQL table and inserts the necessary data into the
respective nodes in Neo4j using a combination of Cyper and SQL queries. This gives our application
its real-time functionality.

3.3 MACHINE LEARNING

The ML models are implemented using the Tensorflow Keras high-level API. This was
originally chosen because it allows us to specify convolutional layers and model structures without
fully understanding the underlying principles of the algorithms. An additional consideration that is
not listed in the design section is that there has to be 3 separate models for each type of model. This
is due to the fact that the transformers themselves have different static data depending on the type
of transformer.

The DNN regression model uses multiple fully connected relu layers and a convolutional
relu layer. Figure 3 is provided to help the visualization of these layers. The input feature vector is
then convoluted to an arbitrary amount of nodes.

Figure 4: Visualization of DNN

These nodes are then further modified by the following layers until they are pooled into the output
layer which in our case is the future kWh output. These inner layers are trained using gradient
descent and backpropagation using the loss function.
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The implementation of the Logistic Regression is similar to the DNN. The model uses the
same kind of convolution process except for the final layer which is the softmax and will output 3
different probabilities corresponding to the chance the data is of the given class. Figure 4 is showing
how this process would look like.

The ML model which is represented by the Neural Net layers and softmax take in an
example from the testing dataset that is a power spike anomaly shown by the 1 in the anomaly field.
The rest of the information is put into the ML model and the output is 3 values in a vector. the first
value represents the chance this is normal data, the second represents the chance the data is a
power spike, and the third represents the chance the data is a power failure. From the output we see
that this datapoint is correctly classified as a power spike with 99.999% chance which is what we
expect. The vector is typically interpreted by using the max value as the class. This means this
would be classified as a power spike since the largest (MAX) value is the 99.999%.

Figure 5: Logistic Regression Example

4 Testing

Since our application relies heavily on accurate data representation, we needed to make
sure that our data was being handled correctly at each stage of the process from it going through
the ML models to it being displayed on the front-end. Described below is how we did our testing.

4.1 UNIT TESTING

● Machine/Deep learning algorithms

The ML models are tested by first setting aside 20% of the total data to be used as testing.
This data is not fed to the model prior to the testing process. This is because the purpose of the
model is to try to generalize the predictions to new unseen data from the same population. This
means that we can test the metrics of the models by using that same testing data which will help
evaluate if the models are improving.
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● Frontend functions

The React application can be easily tested within the demo mode. Changes made in the
code can be compiled instantly to view the dashboard before sending it to production. In addition,
our team can use hard-coded values to verify that data is represented as we expect. By doing this,
we can narrow the source of other potential errors when completing the system integration.

● Endpoint functions

Our team used Postman to send HTTP requests to our backend application. By utilizing
Postman and checking the Docker container logs, we were able to verify that the server-side
application was running and capable of receiving requests. Through this method we could also see
what data the application was sending to confirm it was as expected.

4.2 INTERFACE TESTING

● SQL queries -> REST API -> Machine/Deep learning algorithms -> Front-end functions ->
Frontend design

To test the interconnection between the modules we tested each component individually
then compared that output to the output obtained when the systems were integrated. For example,
we tested queries directly in our databases and compared that output to that received from an API
call configured to execute the same query.

In the same way, the Deep Learning models were tested separately and then with the
integration into the REST API. Again, Postman was utilized to compare the raw output from the DL
models and that received from the API function calls.

Finally, we compared the output from the API function calls to the data that was being
received on the front-end. Using the web console, we were able to see the data being received by our
React application, so we could confirm that the data was consistent even after being parsed for the
dashboard display.

4.3 ACCEPTANCE TESTING

We inspected our frontend application and verified that our graphs are displaying correct
data, that there are no bugs present, and that the interface is acceptable. We involved our client by
having him take a look at our application, our backend functionality, and had him look over both
things to make sure they are functioning properly. Since we met with our client on a weekly basis,
he was able to see how the application evolves incrementally.

Incremental acceptance testing by the client meets the IEEE Standard for Software
Verification and Validation.

The verification process checks if standard programming practices (Agile/Scrum) and
conventions (Testing code after implementing a module) are met. Life cycle activities are checked
for consistency, accuracy, and correctness. If each life cycle activity is verified successfully, the next
activity can be initiated.

The validation process tries to prove that the product works by checking if user needs in a
real-world environment are satisfied and that the product is ready to be deployed.
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4.4 TESTING RESULTS

Through testing we were able to confirm that most of the functionalities work as intended.
One issue is that the server-side application is not able to receive requests instantly after startup.
This is because the API attempts to establish connections with the databases on startup, but the
MySQL and Neo4j take a short time to actually initialize. This poses a small bottleneck at launch of
the application, but such complications have not occurred past this phase.

The results of the testing data on the Logistic Regression ML models give a very small loss
of 0.1167 for the cross-entropy error and an accuracy of 96.27% correct classification. This exceeds
our expectations for the model to have a correct classification rate of around 80%. Additionally, the
loss of the DNN prediction models is only 1.25 which means on average the predictions are only
slightly off the actual kWh by 1.25 kWh. This is significantly better than the standard deviation of
the data which is around 9.9 kWh.

Tests performed on the frontend UI produced errors that ranged from missing data due to
React’s proxy settings (A proxy to the Flask API port allows rest api calls) being misconfigured,
typos in Rest API calls, application crashing due to undefined data from clicking nodes that don’t
have a current reading/output, re-rendering failures and null errors when trying to compare a
node’s data without initially selecting a node. The configuration issue was solved by simply setting
the proxy port correctly. Program crashes from null and undefined values were fixed by checking the
data’s integrity before attempting to manipulate or display them and by also notifying the user
through pop-ups to select a primary node before trying to compare with another node. React
Render element issues were solved by correctly updating the program state as per the React lifecycle
documentation.

5  Closing Material

5.1 RELATED PRODUCTS AND LITERATURE

One related work is Signal_Processing_ML_Power_Grids. This project used signal
processing and machine learning analysis techniques to analyze signal data sent from power grid
systems and detect if there are any anomalies like signals that generate partial discharges and lead
to faults or power outages. Our product is similar in that we also have anomaly detection but ours is
an actual application that can be continuously used while this was a project and only the notebooks
are uploaded.

GridAPPS-D is an open-source software platform sponsored by the Department of Energy
that has node distribution visualization with simulation of capacitors and regulators. It also
produces graphs based on the power grid distribution system simulation. Users can force anomalies
to be visualized in the graphs panel. This application provides the features our application has as
well as more like model validation, Volt-Var optimization, traffic flow analysis, and more.

5.2 REFERENCES

Lim, Ryan., Kin (2019) Singal_Processing_ML_Power_Grids

[Source Code] https://github.com/rlim1812/Signal_Processing_ML_Power_Grids
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tonya1., poorva1209., craig8., blthayer., afisher1., (2020) gridappsd-python (Version 2020.08.0)

[Source Code] https://github.com/GRIDAPPSD/gridappsd-python
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Appendix A Operation Manual
The homepage of the GridAI application displays the network of power consuming nodes. This
network also depicts the physical distance between the nodes and is placed on our display grid
according to each node’s respective physical coordinates. The text under each node signifies the
name of that node. On the left of the homepage is a navigation bar for viewing data in formats
other than the grid. This following section is an instruction manual/guide to our user-interface for
the GridAI application:

Figure 6: Geographical Representation of Power Grid

1. The grid (use and behavior):
a. Zoom in/ zoom out into a cluster of nodes using the mouse scroller.
b. Drag in the natural direction (when zoomed in) to see other nodes.
c. Click on any node, a dialog box shows up which contains the current value of that

node. To close the dialog box, click OK.

Figure 7: Output from Clicking on Grid Node
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d. After closing the dialog box, a graph depicting the history of the clicked is
displayed on the right.

Figure 8: Graph of Clicked Node’s Output History and Predictions

2. The Chart
a. This graph shows the kWh consumption of the last 24 hours as well as the

predicted data calculated using our ML models.
b. To obtain the data of a single hour, simply hover over the line graph on a particular

hour and the label will display the kWh value of the corresponding hour.

Figure 9: Toolbar Showing Node Output When Hovered Over
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c. To obtain the predicted value of next hour, hover over the rightmost point in the
line graph.

Figure 10: Toolbar Showing Node Predicted Value When Hovered Over

3. The navigation bar
a. The navigation bar on the left is to assist the user with additional ways of viewing

the information.
b. To view the anomalies table, click on the ‘Anomaly Table’ under the Dashboard.

Figure 11: Table Showing All Nodes’ Anomaly Statuses
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Appendix B Alternate Design Versions

B.1 ORIGINAL MACHINE LEARNING DESIGN

The design and understanding of the ML algorithms and models has evolved significantly
since the initial project plan and design document. At the time, not much was known about how
the models would detect anomalies or what to predict. The first draft of the ML models was to have
one model that outputs what the expected value should have been and then a separate model that
discriminates based on the difference between the expected and actual kWh values to classify as an
anomaly. Once ML in general was better understood, this design was discarded for a logistic model
to classify anomalies and a linear regression model to predict the future.

The reason for the change is that the prediction model does not really fit with the purpose
of this project as the expected vs actual value is better suited if the prediction is for the future hour.
Additionally, the anomaly classification in the original design is more of a conjecture on how a
model could theoretically work. The reality is that there already exists an algorithm that would not
require the use of another model and is similar in usage to a linear regression type model. This is
why we went with a Logistic model instead as that better fit our goals and purposes for anomaly
classification.

19



Appendix C Other Considerations

C.1 MACHINE LEARNING PRIMER

In order to have a more in depth discussion on the ML that is being done for this project,
an idea of ML on a conceptual level is important. This section is to provide readers with the
knowledge needed to understand the design and implementation decisions for this project. ML at
its core is a series of 3 repeatable steps, representation, evaluation, and optimization. The
representation covers how the data is formatted into an input vector. The input vector covers all of
the features or variables of what you are modeling. Then the model itself is represented as a series
of weights and matrix multiplications that produce an output. This is all a ML model is on a
fundamental level.

The evaluation stage is how you compare what you expect the output to be and what the
actual output of a given datapoint was (known as the label). If you are trying to predict a
continuous value you could use the distance, the square distance, or more complex ways to
discriminate the expected and actual data. Truly the evaluation depends on the purpose of the
model you are training and what the representation is meant to accomplish.

Finally, the optimization stage is to minimize the error of your evaluation. By taking the
derivative, or gradient in multivariate models,  the change of the error with the respect to the
weights can be known. Therefore you can change the weights towards the direction that decreases
this error given your representation of the model. This process occurs many times until you either
reach a convergence or the amount of training cycles that you predetermine. There are more
complexities to this process but to understand our design decisions this is all you need to know on a
fundamental level.
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